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Abstract--This paper addresses the fundamental heat transfer augmentation question of how to arrange a 
stack of parallel plates (e.g. fins of heat sink, printed circuit boards) in a free stream such that the thermal 
resistance between the stack and the stream is minimum. It is shown that the best way of positioning the 
plates relative to one another is by spacing them equidistantly. When the overall dimensions of the stack 
are specified, there is an optimal number of plates for minimum thermal resistance. The optimal number 
and minimum resistance are anticipated theoretically and correlated into compact formulas that agree with 
numerical and experimental results in the ReL range 102-104. Finally, it is shown that a stack with more 
plates thala the optimal number can be modeled more expediently as a porous block immersed in a free 

stream. 

1. INTRODUCTION 

In this paper we consider a fundamental problem of 
heat transfer attgmentation, which has important 
applications in the area of electronic package thermal 
design (Fig. 1). The problem consists of minimizing 
the thermal resistance between a stream of coolant 
(U0, To) and a certain volume in space (L x H x  W) in 
which heat is being generated at the rate q. The overall 
thermal resistance is q/(Tm,x-To), where Tmax is the 
highest temperatare (the hot-spot temperature) that 
occurs at a certain point in the heat generating volume. 

For the coolant to have access to as many spots as 
possible in the volume L × H x  W, the heat transfer 
rate q is generated by (or distributed over) a certain 
number of parallel plates (n), which form ( n -  1) chan- 
nels. The coolant flows through the channels, as well 
as around the entire stack of frontal area H x W. The 
parallel plates are: not necessarily equidistant. 

The most common application of the thermal 
design problem described above is in the cooling of a 
stack of parallel printed-circuit boards. In this case, a 
reasonable approximation is that the heat generation 
rate q is distribu~Led uniformly over the 2n surfaces, 
or that the volume averaged heat flux is uniform, 
q"= q/2nLW. When the stack is held between two 
larger plates aligned with the L x H plane and spaced 
a distance W apart, the flow is essentially two-dimen- 
sional. 

Another application of this heat removal technique 
is in the cooling of electronic components fitted over 
the top with par~dlel plate fins and bathed by a free 
stream [1-3]. In Fig. 1, the top of the electronic com- 
ponent would be represented by the base area L x H, 
which generates the heat transfer rate q. When each 
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plate is thick and conductive enough to function as a 
"short fin" in the W direction, the plate temperature 
is mainly a function of the longitudinal position x. The 
flow can once again be modeled as two-dimensional, 
especially if the crests of the parallel plate fins are 
fitted with a shroud of area L x H, whose function is 
to prevent the loss (or by-pass) of free-stream coolant 
over the top of the stack. 

The geometric optimization of a stack of parallel 
heat-generating plates has been considered before, in 
circumstances that differ from the free-stream cooling 
arrangement of Fig. 1. Most of the published work is 
about vertical stacks cooled by natural convection [4- 
6]. In all the natural convection studies, it has been 
assumed that the plates are positioned equidistantly 
in the stack, so that the problem was reduced to find- 
ing the optimal plate-plate spacing, or the number of 
plates that should be incorporated in the stack. 

In forced convection, there have been numerous 
numerical studies that dealt with a single plate-plate 
channel with specified flow through the channel inlet 
(see the reviews of Incropera [7] and Peterson and 
Ortega [8]). The plate surfaces were either smooth 
(flush mounted heat sources) or ribbed (protruding 
heat sources), as in the studies done by Schmidt and 
Patankar [9] and Davalath and Bayazitoglu [10]. 
When the flowrate through the channel was specified 
there was no optimal plate-plate spacing; instead, the 
focus was on the effect of the heat source geometry on 
the temperature distribution in the channel. 

An optimal plate-plate spacing for forced con- 
vection cooling was derived analytically [11] by min- 
imizing the hot-spot temperature in a two-dimen- 
sional stack of swept length L and width H, held 
between two adiabatic boundaries spaced a distance 
H apart. The plates were positioned equidistantly in 
the stack and it was assumed that the pressure differ- 
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NOMENCLATURE 

fluid specific heat at constant pressure 
constants [equation (22)] 
spacings (Figs. 2 and 5) 
stack width, Fig. 1 
fluid thermal conductivity 
solid thermal conductivity 
longitudinal thermal conductivity 
transversal thermal conductivity 
longitudinal permeability 
stack length (Fig. 1) 
number of plates 
pressure 
Peclet number, UoL/e 
Prandtl number, v/a 
heat transfer rate released by stack 
heat transfer rate per unit length, q~ W 
heat flux, q'/2nL W 
volumetric heat generation rate, q' /HL 
Reynolds number, UoL/v 
flow exit area 
temperature 
free-stream temperature 
maximum (hot-spot) temperature of 
the stack 
velocity components (Fig. 1) 
average velocity in parallel-plate 
channel 
free-stream velocity 
plate width (Fig. 1) 

x , y  
Xw, Xe 

Yn 

Cartesian coordinates (Fig. 1) 
entrance and exit of the computational 
domain (Fig. 1) 
width of the computational domain 
(Fig. 1). 

Greek symbols 
fluid thermal diffusivity 

0 dimensionless temperature 
[equation (6)] 

0hot dimensionless hot-spot temperature 
[equation (11)] 

01 . . . .  dimensionless maximum temperature 
on surface i (e.g. Fig. 2) 

# viscosity 
v kinematic viscosity 
p fluid density 
~rn normal stress 
~b porosity, d/(d+ t) 
• displaced fraction of the free stream 

(Fig. 7). 

Superscript 
( ' )  dimensionless variables [equations 

(5, 6)]. 

Subscripts 
( )mi, minimum 
( )opt optimal. 

ence between the inlet plane and the outlet plane of 
the stack is fixed. Subsequent studies addressed more 
realistic geometric features such as plates with finite 
thickness [12], turbulent flow [13], plates cooled indi- 
vidually in parallel-plate channels [14], plates with 
discrete flush-mounted and protruding heat sources 
[15] and plate fins with variable thickness and height 
[16]. 

On the backdrop provided by the work reviewed 
above, the free-stream arrangement proposed in Fig. 
1 is a step toward a more realistic and general model 
for the cooling process that occurs in an actual design. 
In Fig. 1, the free stream is specified; however, the 
flowrates through the individual channels vary as the 
designer changes the number of the plates and their 
relative positions. 

Focusing now on the task of optimizing the cooling 
mechanism in the L × H x W space of Fig. 1, we note 
that the number of degrees of freedom can be quite 
large (e.g. plate-plate spacings, number of plates), 
even when the number of plates is small. For  this 
reason, it is important that we conduct the opti- 
mization work in a structured manner, so that we can 
develop the clearest and most general design con- 
clusions without having to make the kind of assump- 

tions that tend to limit the applicability of the results. 
The structure of our optimization work is represented 
by three key questions, which are addressed sequen- 
tially in the body of the paper : 

(a) Is there an optimal way of spacing the plates rela- 
tive to each other in the given volume? 
(b) Is there an optimal number of plates that should 
be used (installed) in the given volume? 
(c) Is it possible to correlate all the individual opti- 
mization conclusions into simple (compact) formulas 
that have wide applicability? 

2. MATHEMATICAL FORMULATION AND 
NUMERICAL METHOD 

To optimize the stack geometry in a wide range of 
flow conditions, we had to develop an efficient way of 
examining the effect that a change in the stack 
geometry has on the hot-spot temperature registered 
inside the stack. We made a very large number of 
geometry modifications until we arrived at the designs 
in which the respective hot-spot temperatures are the 
smallest that they can be. We accomplished this by 
simulating numerically the flow and temperature fields 
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Fig. 1. Stack of nonequidistant plates cooled by a free stream (top) and two-dimensional model and 
computational domain (bottom). 

in the two-dimensional domain shown in the lower 
part of  Fig. 1. For  the numerical work, we chose a 
stack with square cross-section, H = L, because the 
effect of  H/L on the optimized geometry can be 
deduced subsequently, as shown in Section 4. The 
plate thickness was fixed at t = L/20 after a review of 
the dimensions used in actual designs (e.g. refs. [17, 
18]). The Prandtl  number  effect on the optimal design 
can also be deduced theoretically (Section 4) ; there- 
fore, it was set at Jar = 0.72 in all the numerical simu- 
lations. 

The flow was modeled as laminar and incom- 
pressible and the fluid was assumed Newtonian with 
constant  properties. Mixed convection effects are 
assumed negligible. The total rate of heat generation 
per unit  of stack width W was fixed, q' = q/IV, and 
distributed uniformly over 2n surfaces, q" =q'/ 
2nL = constant. The dimensionless equations that 
govern the conservation of mass, momentum and 
energy in the x-y domain of  Fig. 1 are : 

0~ 06 
~ - ~ + ~ = 0  (11 

0a + 6 ~  = oF 
a ~  - - 0 3  + v~a (2) 

06 06 O P R~t ab~ + 6 &  & + v26 (3) 

.00 o0 1 
u~-~ +6-~ = peLV2O, (4) 

where V 2 =  02/0~+0~/092. The dimensionless vari- 
ables indicated with " are defined as follows : 

(x, y) (u, v) 
g ' Y -  L ' ( a , o =  U0 (5) 

/~ = - ~ P  0 - T -  To (6) 
2 s p Uo q'/k 
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Table 1. Tests for determining the outer boundaries of the computational domain (ReL = 200, n = 4, equidistant plates). 
The exit planes AB and CD are marked on the lower drawing of Fig. 1 

Average heat flux 

Geometry Integral normal stress AB CD 

x~ x~ AB CD Diffusion Convection Total Diffusion Convection Total 

-0 .8 2.0 0.036342 0.018929 0.015337 1 .89039  1 .90573  0.014658 1 . 85173  1.86639 
- 1.0 2.0 0.033396 0.017223 0.015455 1 . 88809  1 .90352  0.014730 1 .84988  1.86461 
- 1.2 2.0 0.031398 0.016102 0.015526 1 .88560  1 .90113  0.014764 1 .84861  1.86337 
- 1.4 2.0 0.029995 0.015351 0.015565 1 . 88328  1 .89885  0 . 0 1 4 7 7 8  1 . 84773  1.86251 
-1.8 2.0 0.028391 0.014464 0.015612 1 .88008  1 . 89570  0.014789 1 .84649  1.86128 
--2.0 3.0 0.029958 0.015238 0.015194 1 .87933  1 .89453  0.014274 1 .84639  1.86066 
-2.0 3.5 0.030723 0.015627 0.014844 1 . 87974  1 .89459  0.013862 1 . 84696  1.86082 

UoL UoL 
ReL = , PeL -- -- ReLPr.  (7) 

V Ot 

The physical (dimensional) variables are defined in 
the Nomenclature. The boundary conditions imposed 
around the computat ional  domain are : 

t T - - 1 , g = O , O = O  at 2=2wand37e(0,37.)  

0a 80 
c ~ = O , ~ = O ,  ~ = 0  at 

f~ 0O # , d S = 0 ,  ~-~=0 at 

(8) 

and37 = 0, 37, (9) 

2 = 2o and37e (0,37n), 

(10) 

where S is the plane of the exit and #, is the normal 
stress, #n = tr,/p U~. All the plate surfaces were mod- 
eled as no-slip, impermeable and with uniform heat 
flux q" pointing into the fluid. 

It should be noted that the numerical task of simu- 
lating the flow and temperature fields in a stack cooled 
by a free stream (the present problem) is considerably 
more challenging and time consuming than when the 
stack is itself sandwiched between two longer parallel 
plates (e.g. refs. [6, 11]). In the latter, there is no 
coolant by-pass around the stack and, when the plates 
are equidistant, it is sufficient to perform calculations 
only for one plate-plate channel. 

The calculations were performed using the finite 
element software package F I D A P  [19]. The ability of 
this package to handle flows of the same class as the 
present ones was demonstrated based on benchmark 
problems [19, 20]. The extent of the computational  
domain (2w, 2e,37,) was chosen such that the flow 
behaves as a free stream (i.e. is not  affected by the 
stack) in regions situated sufficiently far from the 
stack. As tests, we used (1) the normal stress integral 
over the exit plane [2 = 1, y e  (0, 1/2)], (2) the f com- 
ponent  at the outer edge of the domain (37 = 37,), so 
that g was less than 1% and (3) the heat fluxes through 
the exit plane (2 = 1) of the plate-plate channels. 
Some of these tests are repeated in Table 1 for 
ReL = 200 and n = 4. The values determined in this 

manner  and used in all the simulations are 2o = 3, 
2w = - 2 and 37n = 2. 

The symmetry about  37 = 0 allowed us to perform 
the calculations in only half of the field, namely 
0 < 37 < 37,. For  stacks with four plates, grid inde- 
pendent solutions were obtained by using 4852 quad- 
ratic, isoparametric, rectangular, nine-node elements. 
The number  of elements was increased to 5138 as the 
number  of plates increased to n --- 9. A discontinuous 
pressure model with a penalty factor of 10 -6 was used. 
The operator residual and the velocity residual were 
set at 10 -3 . Successive substitutions with an attenu- 
ation factor of 0.4 and quasi-Newton (Broyden 
update, with reformation of the Jacobian after every 
five iterations) algorithms were used. For  the basic 
runs, which lasted about  1200 s each, we used the 
CRAY Y-MP at the North Carolina Supercomputing 
Center, with local IRIS workstations as front end 
for pre- and post-processing. Approximately 15 c.p.u. 
CRAY hours were necessary for completing this 
work. 

3. HOW TO SPACE THE PLATES RELATIVE TO 
ONE ANOTHER 

The first design question we addressed was how to 
position the plates relative to one another in the stack, 
for example, equidistantly, or in some optimal uneven 
fashion as in the lower part of  Fig. 1. The number  
of plates in the stack, n, is fixed. This question is 
particularly important  in a design with few plates, say 
n = 4, because the two outer plates account for half 
of the total heat transfer area. From the outset, we 
expect the cooling of an  outer plate to differ from the 
cooling of a plate sandwiched by other plates. 

For  this reason and for the sake of illustrating the 
optimization method in the simplest terms possible, 
we present in detail the optimization of the relative 
spacings in a stack with four plates (Figs. 2-4). As 
shown at the top of Fig. 2, the design has only I degree 
of freedom, represented by the half-spacing dl, or the 
position of the internal plate. The sum of the two 
spacings is fixed, d l +  dE = (L/2) -- 2t. 

For  each flow (e.g. ReL = 200 in Fig. 2), we cal- 
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Fig. 2. The effect of the position of the inner plates on the 
maximum temperatures of the plate surfaces (n = 4, 

ReL = 200). 
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Fig. 3. The effect o1' the position of the inner plates on the 
hot-spot temperature of the entire stack (n = 4). 

culated the temperature distributions over all the sur- 
faces. There are four such distributions, 01, 02, 03 and 
04. On each surface, we identified the location and 
value of the maximum temperature. The four tem- 
perature maxima are plotted in dimensionless terms 
(0~ . . . . . . . .  04,~x) in the lower part of Fig. 2. These 
temperature maxima occur close to the trailing edge 
of each surface (e. g. Fig. 4). 

The abscissa of Fig. 2 accounts for changes in the 
relative position of the inner plate: it is very clear 
that this position can be selected such that the peak 
temperature of the entire stack is minimized. Of inter- 
est, then, is the minimization of the largest of the four 
temperature maxima, or the dimensionless hot-spot 
temperature, 

0hot = max (01 . . . . .  02 . . . .  03 . . . . .  04 . . . .  )" (11) 

This second step of the optimization method is pre- 
sented in Fig. 3. The symbols that are superimposed 
on the curve ReL = 200 indicate which of the four 
temperature maxima is the largest, i.e. the surface on 
which the hot spot is located. The hot spot jumps from 
one surface to another as the position of the inner 
plate changes. 

Next to the ReL = 200 data derived from Fig. 2, in 
Fig. 3 we plotted the corresponding results developed 
for ReL = 100 and ReL = 400. The effect of the inner 
plate position is clear: the hot-spot temperature 0ho, 
is always the lowest when 2dl/(2dl +d2) is close to 0.5, 
i.e. when the plates are positioned equidistantly. The 
minimum exhibited by 0hot is sufficiently flat in the 
vicinity of 2dl/(2dl+d2)-~ 0.5 to recommend with 
confidence that the optimal design for n = 4 and 
ReL = 100--400 is the one in which the plates are pos- 
itioned equidistantly. The 0hot minimum becomes flat- 
ter as ReL increases: this means that the equidistant 
positioning of the boards becomes less critical as the 
Reynolds number increases. 

One interesting aspect of the flows and geometries 
summarized in Fig. 3 is that the position of the hot 
spot changes not only with the geometry 
[2dl/(2dl + dz)] but also with the flow (ReL). When ReL 
is small, the hot spot is located always inside the stack, 
i.e. on" one of the surfaces that do not face the free 
stream. When ReL is equal to 200 or greater and when 
the inner plate spacing is close to optimal, the hot spot 
occurs near the trailing edge of the external surface 
bathed by the free stream (0ho, = 04 . . . .  ) .  This feature 
is unexpected and is due to the development of a roll 
on top of the external surface as ReL increases. The 
streamline patterns of Fig. 4 illustrate this effect : the 
actual position of the hot-spot temperature is indi- 
cated with a small circle. In Fig. 4, the streamfunction 
is defined by a = ~ / 0 y  and g = -- 0 ~ / ~ .  

The optimization procedure of Figs. 2 and 3 was 
repeated for a stack with six plates. As shown in Fig. 
5, when n = 6 the design has 2 degrees of freedom 
associated with the positions of the two inner plates 
[or dl and d2, with dl+d2+d3=(L/2)-3t=con- 
stant]. The numerical work was considerably more 
extensive than for the stack with four plates; there- 
fore, in Fig. 5, we show the effect of only one of the 
degrees of freedom on the value and position of the 
hot-spot temperature. In plotting Fig. 5, we fixed the 
innermost half space at d~/L = 0.07, while varying 
the position of the next internal plate (with surface 
temperatures T3 and T4). The lowest hot-spot tem- 
perature occurs in the vicinity of the design rep- 
resented by d2/(d~+d3) = 0.5, which means that the 
optimal position of the movable plate (03, 04) is half- 
way between the innermost plate (01, 02) and the exter- 
nal plate (05, 06). In this optimal case, the hot spot 
occurs near the trailing edge of the third surface, 

0ho t = 03, ma x- 
By repeating the plot of Fig. 5 for other com- 

binations of dl/L and Rez, we were able to strengthen 
the conclusion that in the Rez range 100-400 the low- 



524 A.M. MOREGA et al. 

~ = 0 . 5  

0.4 

0.3 

0.189 / 

o:os 
o 

Re L = 100 

j ~  

0.6 

0.5 ~ ~ "  

0.348 ~ 

0.2 

0.117____._---.-----------~ 
o.os - -  

Re L --- 1000 

Fig. 4. The effect of the Reynolds number on the position of the hot spot (n = 4, equidistant plates). 

est hot-spot temperature is attained when the six plates 
are positioned equidistantly (2dl = d2 = d3). The 
effect shown in Fig. 4 is encountered again:  as ReL 
increases, the hot spot migrates from one of the 
internal surfaces to the trailing section of the external 
surface (0hot = 06 . . . .  )" 

0 .15  - -  

0 .1  

0 hot 

0 . 0 5  

Re  L = 200 

d l / L  = 0.07 

o Ol,ma x 

• 02,m, x 

Q 03~mt t 

0 ,I,max 

A ~ $,mtx 

06,max 

i 
0 

0 . $  
d2/(d 2 + d 3) 

Fig. 5. Stack with six plates : the response of the hot-spot 
temperature to changes in the position of one of the internal 

plates (n = 6, ReL = 200). 

If we compare the ReL = 200 results for four plates 
(Fig. 3) with the corresponding results for six plates 
(Fig. 5), we see that the geometry-induced changes in 
the hot-spot temperature are smaller when n is greater. 
This means that the fine-tuning of the position of each 
plate relative to its two neighbors loses its importance 
as n increases. Since the best designs for n = 4 and 
n = 6 are the ones in which the plates are spaced 
equidistantly, it is safe to generalize and to rec- 
ommend the equidistant spacing as an optimal design 
feature for stacks with more than six plates. 

4. OPTIMAL N U M B E R  OF EQUIDISTANT 

BOARDS 

The second design aspect we investigated was 
whether the number  of boards installed in the stack 
can be selected optimally, so that the hot-spot tem- 
perature is minimized. We assumed that the n boards 
are positioned equidistantly in the stack, in accord- 
ance with the conclusions reached in the preceding 
section. The total heat transfer rate removed from the 
stack of cross-sectional area L x H was equal to q' 
[cf. equation (6)], i.e. independent of the number  of  
boards. 

For  each number  of boards (n) and set of flow 
conditions (ReL), we determined the hot-spot tem- 
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Fig. 6. The effect of the number of equidistant plates on the 
hot-spot temperature. 

perature 0hot. The results are presented in Fig. 6, for 
the range 2 ~< n ~< 8 and 100 ~< ReL <~ 1000. It is clear 
that there exists art optimal number  of boards and that 
knowing this number  accurately makes a difference in 
the effort to maximize the overall thermal con- 
ductance (the inverse of 0hot) ,  The nop t (ReD values 
identified with the help of Fig. 6 are recorded in Table 
2. 

In order to correlate o u r  nop t results and extend 
their validity outside the (n, ReD range of Fig. 6, we 
reexamined the conclusions reached in Bejan and 
Sciubba's [11] study of a stack with parallel equi- 
distant plates and imposed pressure difference AP 
between x = 0 and x = L. In that study, the plate-  
plate channel flows were identical, because the stack 
was cooled in the two-dimensional channel formed 
between two adiabatic plates with the distance H in- 
between (i.e. no fi'ee stream around the stack). It was 
assumed further that the plate thickness is negligible, 
and that the plate-plate spacing d is small when com- 
pared with H, or that the number  of plates is large, 
n = Hid  >> 1. The analysis produced the following 
optimal spacing for a stack with uniform flux on both 
sides of each plate : 

~ - ~ - 3 . 2 ( A P ' L 2 ~  -'/4 (Pr ~> 0.7). (12) 

\ ~ I 

It can be shown by generalizing the analysis of ref. 
[11] that equation (12) holds even when the plate 
thickness is not negligible when compared with the 
plate-plate spacing [12]. 

In the cooling arrangement of Fig. 1, the free-stream 
velocity U0 is specified, not  the pressure drop across 
the stack. In the stack of Fig. 1, there are several 
pressure drops, one for each plate-plate channel. It is 
reasonable to expect that, as the number  of plates 
increases, the order of magnitude of the pressure drop 
is the stagnation pressure scale 

1 2 
AP ~ ~pUo (13) 

and that this scale is the same for all the channels. In 
accordance with the model ofref. [11], we assume that 
nop t >> 1, where 

H 
nopt ~ -  >> 1. (14) 

dop t + t 

By eliminating AP and dop t between equations (12)- 
(14), we obtain an estimate for the spacing in terms 
of the free-stream conditions (ReL = UoL/v), 

dopt ~ 3.8 
(12') 

L - prl/4Re~/2 

and, for the optimal number  of boards, 

H i '4 i /2 0 . 2 6 £ P r  / Ret  

r/op t -~ . (Pr >~ 0.7, n >> 1). 

1 + 0.26 L Prl/4 Re lL/2 

(15) 

The r/opt values calculated based on equation (15) 
have been added to Table 2. The agreement between 
the rounded (integer) values of these order-of-mag- 
nitude estimates and the numerical data furnished by 
Fig. 6 is good, even though the number  of boards is 
small, i.e. outside the range of equation (15). The 
relative agreement improves as ReL increases. This 

Table 2. Summary of results for the optimal number of equidistant plates 

ReL 

hop t 100 200 400 1000 2000 4000 5 0 0 0  6000 10 000 

The present numerical work (Fig. 6) 3 
The theoretical correlation [equation (15)] 2.1 

From Fig. 6 of Nakayama et al. [2] 
From the experiments of Matsushima 

et al. [3] 

4 5 7 
2.9 3.9 5.5 7.2~ 12.1t 9.6~ 14.2t 11.5:1: 

8 10 12 
12-13 15-17 

tCalculated using t/L = 1/60 in equation (15). 
:~Calculated using t/L = 0.0455 in equation (15). 
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Table 3. Summary of results for minimum hot-spot excess temperature 

H 1/2 0hot.~i, 7 P r  ReL [equation (17)] 
ReL 

100 200 400 1000 2 0 0 0  4000 5000 6000 10 000 

The present numerical work (Fig. 6) 
From Fig. 6 of Nakayama et al. [2] 
From the experiments of Matsushima 

et al. [3] 

5.1 5.9 7.1 11.3 
5.7 7.6 10.1 

8.8 9.9 

trend is supported further by the independent data 
described in the next section. 

In conclusion, in the small ReL range 100-1000 we 
may use equation (15) provided we add 1 to the cal- 
culated nopt value. An additional advantage of equa- 
tion (15) is that it shows analytically the effects of the 
stack aspect ratio (H/L),  the board thickness (t/L) and 
the Prandtl number. Recall that the present numerical 
results were obtained by setting H/L  = 1, t /L = 1/20 
and Pr = 0.72. 

The analysis of the two-dimensional stack held in a 
parallel-plate duct [11] produced also an estimate for 
the scale of the maximum thermal conductance that 
corresponds to the optimal equidistant spacing (12), 
namely 

(Tmax q~'_ ro)max ~ ~4 " I/pAP~I/2 o. cp t l~ ,~ - r )  . (16) 

This estimate holds for Pr >~ 0.7, n >> 1 and t << d. If 
we eliminate AP using the pressure scale (13) and if 
we use the 0 definition (6), we can rearrange equation 
(16) as a theoretical scale of the minimum dimen- 
sionless hot-spot temperature, 

L it 9 
Ohot, min ~ 3.5 ~ P r  '- Re~ 1 

(Pr >~ O.7, n >> 1,t<<d). (17) 

This scale is tested in Table 3 by using the minimum 
0hot value identified in Fig. 6 for H/L  = 1 and 
Pr = 0.72. Table 3 shows that equation (17) is correct 
in an order of magnitude sense and that it accounts 
well for large changes in ReL. The same table shows 
that the best correlation of type (17) is obtained if the 
3.5 factor is replaced with approximately 7.6. We will 
improve the correlation (17) in the next section, after 
we review a series of experimental results. 

Before we close this presentation of the numerical 
optimization of stacks with equidistant boards, we 
find it interesting to review the features of the flow 
through and around the stack (Fig. 4). The stack 
displaces a significant fraction of the free stream that 
would be flowing through the space L × H when the 
stack is absent. The volumetric flowrate through the 
entrance plane 

x = O , - - ~ < ~ y < .  

when the stack is absent is UoH. The flowrate dis- 
placed by the stack is 

~H/2 
UoH-- J-|,/2 (u)x = 0dy. (18) 

A relative measure of the displaced (lost) ttowrate is 
the ratio (displaced fraction)/(flowrate when the stack 
is absent) : 

1 fH/2 
* = 1 -- U ~ J _ m 2  (U)x = 0dy. 09) 

This ratio has been calculated for all the flows dis- 
cussed in this section and plotted in Fig. 7. The dis- 
placed fraction • approaches 1 as n increases and Ret  
decreases. In other words, as the number of plates 
increases and, if their thickness remains fixed, the total 
cross-sectional area of the channels decreases to such 
an extent that most of the original flowrate UoH flows 
around the stack. By combining Fig. 7 with the nopt 
values reported in Table 2, we also note that, in stacks 
with optimal numbers of plates, the displaced flow 
fraction • increases as ReL increases. 

0 

R e  L = i 

/ 
/ 
/ 

t. .I 
0.1 

2 4 6 8 
u 

Fig. 7. The fraction of the original free stream that is dis- 
placed by the stack and flows around the stack (equidistant 

plates). 
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5. COMPARISON WITH EXPERIMENTAL 
RESULTS, AND EXTENSION TO HIGHER 

RI"YNOLDS NUMBERS 

Nakayama et al. [2] performed experiments with 
square packages (L = H = 22 mm) fitted with seven 
parallel and equidistant plate fins (W = 12 mm, t = 1 
mm) cooled in a free stream of air. The Reynolds 
number ReL varied in the range 103-104. The base area 
L x H was heated uniformly. The heat transfer and 
temperature measurements were reduced using an 
analysis based on a numerical model described earlier 
by Ashiwake et al. [21]. In the model, the plate surfaces 
were assumed isothermal and the channel flow was of 
the entrance (developing) type. Nakayama et al. [2] 
used this model to reproduce their measurements and 
to anticipate, on a case-by-case basis, what would 
happen if the number of plate fins changes. 

We have translated their results into the present 
notation and projected them on Fig. 6. This addition 
is justified because, in the experiments, the ratio 
t /L = 0.0455 was nearly the same as in the present 
numerical work ( t /L = 0.05). The fin efficiency of the 
plates used in the experiment was greater than 0.95. 
This means that the experimental plates were nearly 
isothermal in the W direction, which is in agreement 
with the assumption that led to the two-dimensional 
model employed in the numerical work (Fig. 1, 
bottom). 

Figure 6 shows that the results of Nakayama et al. 
mesh very nicely with the present numerical results. 
The optimal number of plates for minimum 0hot 
according to Nakayama et al. has been added to Table 
2, along with the corresponding calculations based 
on the theoretical correlation (15). This comparison 
shows that, indeed, equation (15) becomes more accu- 
rate as n increases. Note that the rounded (integer) 
nop t value predicted by equation (15) matches the value 
recorded by Nakayama et al. when ReL exceeds 5000. 

To Table 3, we have added the minimum 0hot values 
read off the curv,~s from Nakayama et al. in Fig. 6. 
We estimate a possible error of the order of 5% in our 
technique of deducing 0hot values from Nakayama et 
aL [2], because the original source of these data was a 
graph with relatively thick curves and without mesh. 
Table 3 shows that these high-ReL data support very 
well the trend anticipated theoretically in equation 
(17). 

The accuracy of the numerical model employed by 
Nakayama et al. [2] was tested based on laboratory 
measurements by Matsushima et al. [3]. These authors 
experimented with finned packages mounted in a par- 
allel plate channel with a vertical spacing of 28 ram, 
which was greater than the fin height W = 18 mm. 
The other dimensions were L = H = 60 mm and t = 1 
mm. The fins were equidistant and their number was 
varied from 8 to 17. The measurements showed a 
discrepancy of less than 1 1% between the measured 
overall thermal conductance between the package and 
the air stream arLd the thermal conductance antici- 
pated based on the numerical model. 

In Tables 2 and 3 we have added the nopt and 0hot, mi n 

values found experimentally by Matsushima et al. [3] 
using the free-stream air velocities 1 and 1.5 m s - t ,  
which, at room temperature, correspond to 
ReL = 4000 and 6000. The experimental values agree 
very well with the two sets discussed previously, even 
though in the experiments of Matsushima et al. the 
t /L ratio was approximately half of  the previous ratio. 
The theoretical correlations (15) and (17) are further 
strengthened by these experimental results. Once 
again, the correlation (17) works best if the 3.5 factor 
on the right side is replaced by approximately 7.6. 

The accuracy of the correlation (17) can be 
improved by accounting for the effect of the board 
thickness. If  we consider the fact that the thickness t 
is not always negligible with respect to the board to 
board spacing d, we can repeat (and generalize) the 
order of magnitude analysis of Bejan and Sciubba [11] 
and obtain [in place of equation (16)]: 

q' (pAP~  '/2 
~- 1 + t/dop~, \-~-r J " (20) 

The difference between this and equation (16) is the 
(1 + t/dopt) group in the denominator, in which dop, is 
independent of the board thickness even when t is not 
negligible [cf. equation (12)]. Next, we substitute the 
AP scale (13) in equation (20) and obtain the fol- 
lowing estimate in place of equation (17) : 

L 1 + C2(t/L)RetL/2 
Oh . . . .  in = C1 (Pr >~ 0.7,n >> 1), 

H prl/2ReL 

(21) 

in which C~ and Cz are two dimensionless constants 
of order 1. Equation (21) was fitted by least squares 
to the 0hot, mi n data produced in this study and in Mat- 
sushima et al. [3] (Table 3) and the constants that 
represent the best fit are 

CI = 1.85 and C2 = 3.27. (22) 

The standard deviation between equations (21, 22) 
and the mentioned data is 0.4%. The 0,ot, mi, data of 
Nakayama et al. [2] are about three times smaller 
than the values calculated based on the generalized 
correlation (21, 22). Note finally that equation 
(21) holds in the range o f  finite Rez values covered 
by this study (Tables 2 and 3). It does not mean that 
0hot, min ~ OO if ReL ~ O. 

The scaling theory of ref. [11] showed that the class 
of optimization rules to which the present results 
[equations (12, 15, 21, 22)] belong corresponds to 
flows in which the channel length L is of the same 
order as the thermal entrance length of each channel. 
This means that, when the coolant has a Prandtl num- 
ber of order 1 (e.g. air), the velocity boundary layers 
meet at the trailing edge of each parallel-plate channel. 
The laminar flow prevails as long as the order of ReL 
is less than 2 x 105, which is equivalent to a channel 
Reynolds number U(2dopt)/v less than 2000 [22]. 



528 A.M. MOREGA et al. 

Table 4. Results obtained by treating the stack as a porous medium with Darcy flow: 
ReL = 400 ; ks/k = 0 ; H/L = 1 ; Pr = 0.72 ; t/L = 0.05 ; d/L = 0.0688. Listed in par- 

entheses are the corresponding values obtained with the model of Section 2 for n = 9 

CPU time 
ReL Ohot 0 (s) Iterations 

100 0.321 0.9751 76l 13 
(0.459) (0.9751) (1911) (13) 

200 0.306 0.9456 1044 18 
(0.332) (0.9486) (2646) (18) 

400 0.114 0.8790 1218 21 
(0.135) (0.8857) (2793) (19) 

6. THE STACK WITH MORE PLATES THAN THE 
OPTIMAL NUMBER, MODELED AS AN 

ANISOTROPIC POROUS MEDIUM WITH DARCY 
FLOW 

The entrance-region character of the channel flow 
in the optimal design (d = dopt) means that, when the 
coolant free-stream velocity is less than the specified 
design value (U0), most of the channel flow is in the 
fully developed regime (Hagen-Poiseuille). Such an 
off-design condit ion is equivalent to installing more 
boards than the optimal number  in the present stack 
(Fig. 1, top, with the full U0 around the stack), or 
using channels that are narrower than the optimal 
spacing found in equations (12, 12'), d < dop t. 

The performance of the stack (its hot-spot tem- 
perature) can be determined numerically using the 
method of Section 2 for any channel spacing, includ- 
ing d < dopt. It is important  to note that, when d < dopt 
and the channel flow is of the Hagen-Poiseuille type, 
the temperature distribution in the volume occupied 
by the stack can be calculated considerably faster (e.g. 
Table 4) if the stack volume is treated as a saturated 
homogeneous anisotropic porous medium with Darcy 
flow in the x direction. The porous medium model has 
the added advantage that it accounts (in a volume 
averaged sense) for the conduction through the board 
material, longitudinally and transversally. Below, we 
list only the modifications that the porous medium 
model brings into the numerical formulation 
described in Section 2. 

The equations and far-field conditions for the flow 
and heat transfer in the regions situated outside the 
stack remain unchanged. Inside the H × L space, the 
flow is purely longitudinal (v = 0), with the velocity 

K~ c~P 
u (23) 

~x '  

which is constant  from x = 0 to x = L, but  may vary 
in the y direction. The Kx permeability of a stack 
with boards spaced equidistantly (spacing = d, board 
thickness = t) is a known constant  (e.g. ref. [23]) : 

d 3 d 2 
Kx 12( t+d)  12 ~b' (24) 

where ~b = d/ (d+ t) is the stack porosity. The u vel- 

ocity is a volume averaged quantity, which, based on 
mass conservation, corresponds to the u component  
immediately outside the stack (in the pure fluid, at 
x = 0-  and x = L+). The porous medium is imper- 
meable in the transversal direction. 

The u velocity inside the porous medium is a func- 
tion o fy  because it is driven by the pressure difference 
between the entrance and exit of an individual chan- 
nel, - -~P/~x = [P(O,y) -P(L ,y) ] /L .  This pressure 
difference is maximum across the channel positioned 
along the midplane (y = O) and smaller near the lat- 
eral edges (y  = __ 1t/2). In the numerical implemen- 
tation of the porous medium model, it is assumed that 
P varies continuously across the entrance and exit 
planes of the stack (x = O, L). 

The temperature distribution inside the H x L space 
is governed by the new energy equation : 

OT k O2T k ~32T " 
pCpU ~x  = X ~x2 + Y ~y2 + q '' (25) 

which replaces equation (4). Local thermal equi- 
librium is assumed, so that T represents the local tem- 
perature of the solid and adjacent fluid. The total 
heat generation rate of the stack (q') is distributed 
uniformly over the stack volume, q" = q ' /HL.  Given 
the parallel-plates structure of  the porous medium 
(many plates are assumed), the directional thermal 
conductivities (kx, k,.) can be estimated based on the 
parallel resistance and series resistance models (e.g. 
ref. [24]): 

kx = q~k+ (1 - q~)ks (26) 

kks 
k ~ ' -  ( 1 - + ) k + ~ k s '  (27) 

where k s is the thermal conductivity of the solid phase 
(the board material). The temperature T varies con- 
tinuously across the boundary  of the H x L space. 

Finally, when we nondimensionalize the energy 
equation (25) using the variables defined earlier in 
equations (5, 6), we find that the dimensionless tem- 
perature inside the stack depends on eight variables, 
0 = O[~,y, H /L ,  Pr, ReL, d/L, t /L (or q~), ks~k]. The hot 
spot occurs at or near the exit from the stack, as will 
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ReL = 1 ~  

/ 
! • 

J 

ReL = 400 

Fig. 8. The flow pattern when the stack is treated as a porous medium (H/L = 1, Pr = 0.72, t/L = 0.05, 
d/L = 0.0688). 

be illustrated by the isotherm patterns of Fig. 9. The 
dimensionless hot-spot temperature depends on a 
total of six parameters, 0~ot = Oho,(H/L, Pr, ReL, d/L, 
t/L, ks~k). 

The most important questions that can be answered 
numerically by using the above model are: (a) what 
is the effect of the conductivity ratio ks/k on the hot- 
spot temperature; and (b) how accurate and more 
efficient is this simpler model relative to the complete 
model described in Section 2? We investigated these 
aspects by fixing (as in Sections 2-5) several 
parameters, namely H/L = l, Pr = 0.72 and 
t/L = 1/20. 

As a first example, we chose an external flow with 
ReL = 400, for which Fig. 6 showed that the optimal 
number of boards is nop,= 5. To place the actual chan- 
nel flow in the Hagen-Poiseuille regime, we chose a 
larger number of boards, namely n = 9. The other 
geometric parameters that follow from this choice are 
d /L= 0,0688 and q~ = 0.579. 

The flow pattern calculated for ReL = 400 using the 
stack porous medium model is shown in the lower 
part of Fig. 8. Tile base of the drawing (the lowest 

streamline) is the plane of symmetry of the stack, 
y = 0. Only the external flow situated in the immediate 
vicinity of the stack is shown (the computational 
domain is considerably more extensive, as indicated 
at the end of Section 2). Figure 8 shows that most 
of the fluid that flows through the stack prefers the 
channels that are close to the plane of symmetry. The 
flow through the stack is more uniform when ReL is 
smaller, as shown in the upper drawing of Fig. 8. 

The isotherm patterns that correspond to the 
ReL = 400 flOW are presented in Fig. 9, We see that the 
temperature distribution inside the stack is influenced 
greatly by the thermal conductivity ratio ks/k. Fur- 
thermore, the position of the hot spot is dictated by 
kJk. When ks/k is small (Fig. 9, top), the hot spot 
occurs near the exit from one of the outer (peripheral) 
parallel-plate channels, because the flow through that 
channel is relatively weak (Fig. 8, bottom). In the 
opposite extreme, a large ks/k ratio means that the 
stack is cooled in the transversal direction by the fluid 
that flows around the stack. In this limit, the hot spot 
occurs near the exit from the channel that coincides 
with the plane of symmetry. The hot spot migrates 
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Fig. 9. The temperature distribution that corresponds to the Re t = 400 flow shown in Fig. 8. 

from one position to the other when k J k  is of 
order 1. 

The additional cooling effect due to transversal con- 
duction is even more evident in Fig. 10. The hot-spot 
excess temperature 0hot decreases to about one-fifth of 
its original value as ks/kincreases from 0 to 104. Figure 
10 also summarizes the corresponding conclusions 
obtained for two additional examples, ReL = 100 and 
200. The 0,or value is larger when ReL is smaller : this 
trend agrees with what we saw in Fig. 6 by using the 
model of Section 2. 

Finally, in Table 4, we show a comparison between 
the results obtained with the two models, specifically 

the porous stack model with ks/k --- 0 and the model 
of Section 2 for a stack with nine plates. The Section 
2 model is represented by the values placed in par- 
entheses. The agreement between the two sets of 0,or 
values is quite good. The fraction of the displaced 
flow 4) calculated with the porous medium model is 
virtually the same as the fraction calculated with the 
model of Section 2. The table shows that the loss in 
the accuracy with which the porous medium model 
predicts 0hot is balanced by a gain in computational 
speed. The porous medium model has the additional 
advantage that it documents the effect of the thermal 
conductivity ratio. 



Free stream cooling of a stack of parallel plates 531 

O h o t  

P r  . 0 . 7 2  

t 

• 'A~,i 

l l O  • • 

• • l R m  

,400 

0 . 0 1  ~ ' ~ ~  
1 0  .4 1 0  .2 1 1 ~  104 

k 

Fig. 10. The hot-spot excess temperature obtained by treating 
the stack as a porous medium. 

7. CONCLUSIONS 

In this paper, we addressed the fundamental  heat 
transfer augmentat ion problem of  how to cool a stack 
o f  parallel plates immersed in a free stream. We inves- 
tigated this problem in four distinct phases, with the 
following key conclusions : 

(a) The best way of  positioning the plates relative 
to one another  is by spacing them equidistantly. The 
relative positioni:ng of  the plates becomes less critical 
as the number  of  plates increases. 

(b) When the free stream and the overall dimen- 
sions of  the stack are specified, there is an optimal 
number o f  plates that minimizes the overall thermal 
resistance between the stack and the free stream. This 
optimal number can be predicted by theory [equation 
(15)] and is validated by numerical simulations and 
laboratory measurements in the ReL range 102-104 
(Table 2). 

(c) The scale of  the minimum thermal resistance 
can be anticipated theoretically [equation (21)]. This 
scaling was used to construct a compact  correlation 
[equation (22)]. 

(d) A stack with more plates than the optimal num- 
ber can be modeled as a saturated porous medium 
with Darcy flow. The computat ions are faster and 
permit a study of  the effect of  the fluid/solid thermal 
conductivity ratio. 
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